BackTracking
Do not try in-place like```s = s.subtr(0, i)`` in backtracking(recursive operation)
STL basic function arguments meaning:
- substr()
- vector<>()
- assign()
- std::find()
- erase()
longest substring without repeating characters
C++ set
template < class T, // set::key_type/value_type
class Compare = less<T>, // set::key_compare/value_compare
class Alloc = allocator<T> // set::allocator_type
> class set;
The value in set container can not be modified (their elements are const), but they can be removed and inserted.
The value in set is ordered in according to specific weak ordering criterion. set containers are generally slower than unordered_set containers to access individual elements by their key, but they allow the direct iteration on subsets based on their order.
Basic Operation:
empty() size();
insert() emplace() erase(); //insert and remove
find();
if (m.count(val)) // val exists
operation=// set s; set a; s = a;
C++ map
template < class Key, // map::key_type
class T, // map::mapped_type
class Compare = less<Key>, // map::key_compare
class Alloc = allocator<pair<const Key,T> > // map::allocator_type
> class map;
The value in map is ordered by its key in according to specific weak ordering criterion. Map containers are generally slower than unordered_map containers to access individual elements by their key, but they allow the direct iteration on subsets based on their order.
Basic Operation:
empty() size()
insert() emplace() erase() //insert and remove
find()
if (m.count(key)) // key exists
DP(Dynamic Programming)
Those who cannot remember the past are condemned to repeat it. – Dynamic Programming.
In a nutshell, dynamic programming is recursion without repetition.
In leetcode, the DP problems can be split into two categaries: continue and discrete.
review all problems:
- Continue:
if f(i) is not only connected to f(i-1), also to f(i-2), then you do not only need one variable, such as max_val for recording the largest value, but also need another value to iterate, like a, b = a, a+b(Fibonacci numbers). - Discrete:
For each element, you can choose do nothing or do operations(like add it or minus it).
Right now, I wanna introduce one kind of DP with conditions. The problems are both based on a 2d matrix including only “0” and “1”.- First one – leetcode 221. Maximal Square(medium)
Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing only 1’s and return its area.
Iteration function(Initial operation is omitting):vector<vector<int>> dp(matrix.size(), vector<int>(matrix.at(0).size(), 0)) if(matrix[i][j] == 1) dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) else // do nothing dp[i][j] = matrix[i][j]
- Second one – leetcode 63. Unique Paths II(medium)
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
Now consider if some obstacles(use 1 to represent) are added to the grids. How many unique paths would there be?
Iteration function(I achieve it in place here):(Initial operation is omitting)if(grid[i][j] == 1) grid[i][j] = 0 else// grid[i][j] = 0 grid[i][j] = grid[i-1][j] + grid[i][j-1]]
- First one – leetcode 221. Maximal Square(medium)
Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing only 1’s and return its area.
Leveshtein Distance
string word1 = "hello";
string word2 = "hall";
// m means the number of word1
// n means the number of word2
// del, rep, ins represents change from word1 to word2
int m = word1.size();
int n = word2.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
dp[0][0] = 0;
for(int i = 1; i <= m; ++i){
dp[i][0] = i;
for(int j = 1; j <= n; ++j){
dp[0][j] = j;
int del = dp[i - 1][j] + 1;
int ins = dp[i][j - 1] + 1;
// do nothing and replace a letter
int rep = word1[i] == word2[j]? dp[i - 1][j - 1]: dp[i - 1][j - 1] + 1;
// "aaa" "aa" word1[2] == word1[1] and min step is delete(dp[i-1][j])
// not do nothing(dp[i-1][j-1])
// the following is wrong
// if(word1[i] == word2[j])
// dp[i][j] = min(del, ins);
// else
// dp[i][j] = min({del, ins, dp[i - 1][j - 1] + 1});
dp[i][j] = min({del, ins, rep});
}
}
return dp[m][n];
Find the shortest path - SPFA
The following pseudocode does not think of minus loop:
// 3 vector/array: dist, visited, path
dist[] = std::numeric_limits<>::max()
visited[]=0
path[]
queue Q
dist[start_node] = 0
// any operations for Q will influence visited
Q.push(start_node)
//when node is in Q, his visited is 1
visited[start_node] = 1
while(!Q){
u = Q.front()
Q.pop()
// node leaves, his visited becomes 0
visited[u] = 0
for(all edges connected node v for node u){
//fasten
if(dist[u] + edgesTov < dist[v]){
path[u] = v
dist[v] = dist[u] + edgesTov
if(!visited[v]){
Q.push(v)
visited[v] = 1;
}
}
}
}
Because of involving std::stack and std::queue, I want to introduce them right here, right now.
stack is first in, last out, but queue is different, which is first in, first out. Both of them have pop()/push()/emplace(), but both have diffent location(front or back) for poping and pushing. So stack has top() func, however, queue has front() which just acquires “oldest” element that pop will delete from queue. And queue has back() for “newest” element, too.
DFS(Deep First Search)
在DFS中,当某节点的左右节点都为空,或者该节点的左右树都已经遍历完成,则会return,也就是跳出DFS function,也就是开始退栈。举例:理解下面的函数,就要理解pop_back的作用,也就是在退栈的时候会执行,而什么时候会退栈?就是左右节点为空,或者左右树都已经遍历完成。
void pointToVector(TreeNode * p, vector<int>& res)
{
res.push_back(p->val);
if ((p->left == nullptr)&&(p->right == nullptr)) {
sumAll += cal(res);
return;
}
if (p->left != nullptr) {
pointToVector(p->left, res);
res.pop_back();
}
if (p->right != nullptr) {
pointToVector(p->right, res);
res.pop_back();
}
}
For a directed or undirected graph, the following code is the best pseudocode to iterate each node for only once. The code has no loop to entire graph instead of using recursion.
DFS(G, u)
u.visited = true
for each v ∈ G.Adj[u]
if v.visited == false
DFS(G,v)
init() {
For each u ∈ G
u.visited = false
For each u ∈ G
DFS(G, u)
}
DFS is normally implemented recursively, rather than using an explicit stack:
DFS(v):
if v is not marked
mark v
for each edge v-> w
DFS(w)
The following code describes all paths from one point as start point to target point based on directed graph.
// the first step: source is start point
void dfs(vector<vector<int>>& graph, int source, int target, vector<vector<int>>& path)
{
onePath.push_back(source);
if (source == target)
{
path.push_back(onePath);
}
for (auto i : graph[source])
{
dfs(graph, i, target, path);
//every recursive location, think about the following pop_back
onePath.pop_back();
}
}
int main(){
int target = graph.size() - 1;
vector<vector<int>> path;
dfs(graph, 0, target, path);
}
When using variables reference and modify it in the recursive process, you should be careful. There is an example for rectify the modification after each time of return false. There is the link of leetcode: word search.(PS: == has priority to | or &&) |
vector operations
void removeDuplicate(std::vector<string>& s)
{
sort(s.begin(), s.end());
for (int i = 1; i < s.size(); ++i)
{
if (s[i - 1] == s[i])
{
s.erase(s.begin()+i-1);
--i; // point is here
}
}
}
set Operation(union and intersection)
There, I will introduct two STL function called set_union
and set_intersection
.
eg. Find the common part of each set in vector<set<int>> v
//for inserter
#include <iterator>
// for swap
#include <algorithm>
set<int> __intersection;
set<int> temp = v.at(0);
for (int i = 0; i < v.size(); ++i){
set_intersection(temp.begin(), temp.end(), v.at(i).begin(), v.at(i).end(),
std::inserter(__intersection, __intersecion.begin()));
// __intersection has function insert(), so std::inserter is OK
// if changed to back_inserter from inserter, error for not
// have push_back for __intersection, because __intersection is
// a set not a vector
std::swap(__intersecion, temp);
__intersection.clear(); // clean set of containing each time's result
}
string – int – char
std::string(size_type n, char c);
Fills the string with n consecutive copies of character c.
std::string(const char * s, size_type n);
Copies the first n characters from the array of characters pointed by s.
string (const char* s);
Copies the null-terminated character sequence (C-string) pointed by s.
std::atoi(const char *);
Transform c-type char * to int
std::stoi(const string);
Transform string to int
将string类型变量转换为常用的数值类型
#include <sstream>
long long int stringToNum(const string& str)
{
istringstream iss(str);
long long int num;
iss >> num;
return num;
}
如果需要转换的int字符太长,上述的stream方法仍然无效,可以采用下面的方法,使用map将每个字符映射成数字:
long long int stringToNum(const string &str)
{
map<char, int> m;
long long int x = 0;
for(int i = 0; i< str.size(); ++i){
x = x * 10 + m[i];
}
return x;
}
int to string
1.
int a = 10;
char *intStr = itoa(a);
string str = string(intStr);
2.
int a = 10;
stringstream ss;
ss << a;
string str = ss.str();
3.
#include <string>
std::string s = std::to_string(42);
long int to string
#include <sstream>
std::string number;
std::stringstream strstream;
strstream << 1L;
strstream >> number;
string to int
//1.
string str="123";
atoi( str.c_str() );
//2.
std::stoi(str);
//3.
std::stringstream ss(str);
ss >> thevalue;
string to double
string str;
double value = atof(str.c_str());
string word;
openfile >> word;
double lol = atof(word.c_str());
double to string
//**最后输出的number只能显示s中的六位(从高位数)**
string s="235.19123";
std::stringstream ss(s);
double number=0;
ss>>number;
二叉搜索树 (binary search tree)
The nodes of left tree are smaller than or equal to the root. The nodes of right tree are larger than or equal to the root.
- 插入一个数
TreeNode* InsertNodeBST(TreeNode* root, const int insertVal){
if(!root)
return new TreeNode(insertVal);
if(root->val < insertVal)
root->right = InsertNodeBST(root->right, insertVal);
else
root->left = InsertNodeBST(root->left, insertVal);
}
return root;
}
- 删除一个数
TreeNode* deleteNodeBST(TreeNode* root, const int deleteVal){
if(root->val < insertVal)
root->right = deleteNodeBST(root->right, deleteVal);
else if(root->val > insertVal)
root->left = deleteNodeBST(root->left, deleteVal);
else{
if(!root->left || !root->right){
auto nonempty = root->left == nullptr? root->right: root->left;
return nonempty;
}
else{
auto min_node = root->right;
while(min_node->left)
min_node = min_node->left;
root->val = min_node->val;
root->right = deleteNodeBST(root->right, min_node->val);
}
}
return root;
}
Tree classification
- complete binary tree 完全二叉树 (最底层可能不满)
- perfect binary tree 满二叉树 (每层都是满的)
- full binary tree (每个节点要么没有子节点,要么是两个子节点)
最小生成树
生成树是建立在无向图中的,对于有向图,则没有生成树的概念,最小生成树不一定唯一,当所有边权值不同时唯一。但是权值之和时一定的
邻接矩阵/逆邻接矩阵
无向图的邻接矩阵时对称的,主队角元素为0,有向图不一定
连通图
每个顶点之间都有一个边的为连通图
最大子数组
- 求取相邻子数组之和最大值:可以理解为在已知股价折线图上求最大收益的时间段
Topological Sorting
Topological sorting is not possible if a graph is not a DAG(Directed Acyclic Graph). Topological Sorting is mainly used for scheduling jobs from the given dependencies among jobs.
Topological sorting can be used to find circle in a directed graph.
e.g. we can find collapse dependence for course schedule in leetcode-example.
Detailed description shown below as presudocode of topological sorting:
def dfs(node):
# for list visited, 2:visiting, 1:visited
# if visited[node] = 1, never consider it again.
visited[node] = 2
# if neighbor is 2, has circle, if 1, skip it over, if 0, dfs it.
for node_neighbor in node.neighbor:
if visited[node_neighbor] == 2:
mark as circle
break # if not break, dead loop
if visited[node_neighbor] != 1:
dfs(node_neighbor)
stack.append(node) # no neighbor or visited[neighbor] == 1
visited[node] = 1
for node in all_node:
if node is not visited or not visiting:
dfs(node)
memory limited
When occuring into memory limited situation, check whether vector or other data structure costs much resources copying.
delete a node in a tree
void dfs(TreeNode* root, const vector<int>& to_delete){
if(root->left != nullptr)
dfs(root->left, to_delete);
if(root->right != nullptr)
dfs(root->right, to_delete);
if(std::find(to_delete.begin(), to_delete.end(), root->val) != to_delete.end()){
if(root->left != nullptr)
forest.push_back(root->left);
if(root->right != nullptr)
forest.push_back(root->right);
// the flowing code can not delete node *root*
root->val = NULL;
root->left = nullptr;
root->right = nullptr;
root = nullptr;
}
}
If you wanna delete a node whose value to_delete contains from a tree and you can use dfs like this:
TreeNode* dfs(TreeNode* root, const vector<int>& to_delete){
if(root->left != nullptr)
root->left = dfs(root->left, to_delete);
if(root->right != nullptr)
root->right = dfs(root->right, to_delete);
if(std::find(to_delete.begin(), to_delete.end(), root->val) != to_delete.end()){
if(root->left != nullptr)
forest.push_back(root->left);
if(root->right != nullptr)
forest.push_back(root->right);
return nullptr;
}
return root;
}
Best time to buy and sell
This kind of problems involves some basic conditions or limits. For example,
- You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).
- You may complete as many transactions as you like (i.e., buy one and sell one share of the stock multiple times). The limit may be suitable for all buy and sell problem, because you have no need to buy and sell twice if the pirces of consistent two day have rised. You just buy in the first day and sell int the tird day. Not to mention that there may be a transaction fee.
The following problems can be derived from the above:
- You may complete as many transactions as you like (i.e., buy one and sell one share of the stock multiple times). Ans: plus all positive diff_prices
- You may complete at most two or K transactions. Ans: for each price, you can hold buy it or sell it.
- buy and sell combines one transaction with a positive fee. Ans: if next price - last pirce - fee > 0 prove that can be added to final profits.
- buy and sell with a cooldown day. Ans: use DP algorithm. dp[i] denotes the max profit of the first i days, and then dp[i] = max(dp[i] , dp[i - 1], prices[i] - prices[j] + dp[j - 2]), here, j means buy time and i is sell time.
Base a or Base a()
Base is a c++ class. Base a() just declear a function which return a Base object. So it will not call Base constructor. However, Base a is similar to Base a{}.
Template Specialization in C++
template<class T>
class Test{};
// specialization of above class
template<>
class Test<int>{};
The following is the same with the above and operator() overloading will be added to the specialization.
template<class T>
class Test{};
template<>
class Test<int> {
public:
int operator()(int h) {
return h*h;
}
};
int main() {
// return x = 9
// ()return Test object and
// (3) overload operation()
auto x = Test<int>()(3);
return 0;
}
Use user-defined class as key in unordered_set(unordered_map)/set(map)
unordered_set
#include <unordered_set>
class Test {
private:
int x;
int y;
public:
Test(int xx, int yy) {
x = xx;
y = yy;
}
int getX() const{
return x;
}
int getY() const{
return y;
}
bool operator==(Test t2) const {
return x == t2.x && y == t2.y;
}
};
namespace std {
template<>
struct hash<Test>{
int operator()(const Test t) const{
return hash<int>()(t.getX()) ^ (hash<int>()(t.getY()));
}
};
}
int main() {
unordered_set<Test> t;
t.insert(Test(1, 2));
t.insert(Test(2, 3));
t.insert(Test(2, 3));
// size == 2
cout << t.size() << endl;
return 0;
}
set
#include <set>
class Test {
private:
int x;
int y;
public:
Test(int xx, int yy) {
x = xx;
y = yy;
}
int getX() const{
return x;
}
int getY() const{
return y;
}
bool operator< (Test t2) const {
return x + y < t2.x + t2.y;
}
};
int main() {
set<Test> t2;
t2.insert(Test(1, 2));
t2.insert(Test(2, 3));
t2.insert(Test(1, 2));
// size == 2
std::cout << t2.size() << std::endl;
return 0;
}
In conclusion, you can specialize *hash
Sorting
There are many ways for sorting, at least 10 kinds of sorting. I just choose several important sorting ways. Quick sort, heap sort and merge sort (time complexity: O(nlgn)).
Quick Sort
void quickSort(vector<int> &nums, int left, int right) {
int i = left;
int j = right;
int pivot = nums[left];
while (i < j) {
// key point is you need to find val from right
// if the following whiles are changed in order, then
// nums[i]/[j] is larger than nums[left].
// There is an error when exchange nums[left] = nums[i] out of the range
while (i < j && nums[j] >= pivot)
--j;
// <= is necessary, because i should be started from left not left + 1
while (i < j && nums[i] <= pivot)
++i;
auto temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
nums[left] = nums[i];
nums[i] = pivot;
if (i > left)
quickSort(nums, left, i - 1);
// not else if, you need to iterate two segment
if (i < right)
quickSort(nums, i + 1, right);
}
vector<int> sortArray(vector<int>& nums) {
quickSort(nums, 0, nums.size() - 1);
return nums;
}
Merge Sort
Like QuickSort, Merge Sort is a Divide and Conquer algorithm.
MergeSort(arr[], l, r)
If r > l
- Find the middle point to divide the array into two halves:
middle m = (l+r)/2 - Call mergeSort for first half:
Call mergeSort(arr, l, m) - Call mergeSort for second half:
Call mergeSort(arr, m+1, r) - Merge the two halves sorted in step 2 and 3:
Call merge(arr, l, m, r)
The process is illustrated as
The C++ instance is shown the following:
class Solution {
public:
void merge(vector<int> &nums, int l, int m, int r) {
vector<int> left;
vector<int> right;
copy(nums.begin() + l, nums.begin() + m + 1, std::back_inserter(left));
copy(nums.begin() + m + 1, nums.begin() + r + 1, std::back_inserter(right));
int i = 0;
int j = 0;
int k = l;
while (i < left.size() && j < right.size()) {
if (left[i] < right[j]) {
nums[k] = left[i];
++i;
}
else {
nums[k] = right[j];
++j;
}
++k;
}
while (i < left.size()) {
nums[k] = left[i];
++k; ++i;
}
while (j < right.size()) {
nums[k] = right[j];
++k; ++j;
}
}
void mergeSort(vector<int> &nums, int l, int r) {
int m = l + (r - l) / 2;
if(l < m)
mergeSort(nums, l, m);
if(m + 1 < r)
mergeSort(nums, m + 1, r);
merge(nums, l, m, r);
}
};
Heap Sort
Heap is an array whose rule is maintained by full binary tree. Max heap has the feature: every node’s value is larger or equal to its children values (left and right). Min heap is on the contrary.
class Solution {
public:
// put ith element of nums in right place
void build_heap(vector<int> &nums, int size, int i) {
int large = i;
if (i * 2 + 1 < size && nums[large] < nums[i * 2 + 1])
large = i * 2 + 1;
if (i * 2 + 2 < size && nums[large] < nums[i * 2 + 2])
large = i * 2 + 2;
if (i != large) {
int temp = nums[i];
nums[i] = nums[large];
nums[large] = temp;
build_heap(nums, size, large);
}
}
vector<int> sortArray(vector<int> & nums) {
// node which has children is not leaf
// put non-leaf nodes in right place
for (int i = nums.size() / 2 - 1; i >= 0; --i)
build_heap(nums, nums.size(), i);
// max heap has been built now
for (int i = nums.size() - 1; i >= 0; --i) {
// swap nums[0] and nums[i]
// order has been finished from i to end
int temp = nums[0];
nums[0] = nums[i];
nums[i] = temp;
// the second param: i - end has order
// the third param: the first element(nums[0])
// changes its place. need to change it only.
build_heap(nums, i, 0);
}
return nums;
}
};
binary search
只要数组有序,就应该想到双指针技巧(包括快慢指针(链表)、左右指针(数组))
There are two types. One of them is [l, r) and the other is [l, r]. The follwing code have the same feature: when l == r
, while
quite.
def binary_search_open(l, r, cond) # r = len(nums)
while l < r:
m = l + (r - l) // 2
if cond(m):
r = m
else:
l = m + 1
return l
def binary_search_close(l, r, cond):# r = len(nums) - 1
while l <= r: # note
m = l + (r - l) // 2 # in case of overflow
if cond(m):
r = m - 1 # node
else:
l = m + 1
return l
e.g. find the bound of value in an ordered array
# from while(l < r), use open array [l, r)
# r = len(nums)
def find_left_index(l, r, nums, target):
while(l < r):
m = l + (r - l) // 2
if nums[m] < target:
l = m + 1
elif nums[m] > target:
r = m
else:
r = m # note
return l
def find_right_index(l, r, nums, target):
while(l < r):
m = l + (r - l) // 2
if nums[m] < target:
l = m + 1
elif nums[m] > target:
r = m
else:
l = m + 1 # note
return r - 1
if __name__=='__main__':
nums = [1,2,2,2,3,3,3,4,5,5,5]
index = find_left_index(0, len(nums), nums, 3)
index_ = find_right_index(0, len(nums), nums, 3)
print("index from {0} to {1}".format(index, index_))
Slice Windows
Linux thread and process
The thread and process have the same structure like:
struct task_struct {
// 进程状态
long state;
// 虚拟内存结构体
struct mm_struct *mm; // note
// 进程号
pid_t pid;
// 指向父进程的指针
struct task_struct __rcu *parent;
// 子进程列表
struct list_head children;
// 存放文件系统信息的指针
struct fs_struct *fs;
// 一个数组,包含该进程打开的文件指针
struct files_struct *files; // note
};
mm means virtual memory and files can be shown like
我们知道系统调用fork()
可以新建一个子进程,函数pthread()
可以新建一个线程。但无论线程还是进程,都是用task_struct
结构表示的,唯一的区别就是共享的数据区域不同。由下图可见
Compare two trees whether same
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSameTree(TreeNode* p, TreeNode* q) {
// note 4 conditions
if(!p && !q)
return true;
if(!q || !p)
return false;
if(p->val != q->val)
return false;
return isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
}
};