OpenCV3.×编译
以下方法是编译opencv3.2+contrib部分 使用同样版本的opencv and opencv_contrib,其中()中的内容一般没有用,可以去掉, () use CMake’s BUILD_opencv_* options.
cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=/usr/local -DWITH_TBB=ON -DBUILD_NEW_PYTHON_SUPPORT=ON -DWITH_V4L=ON -DBUILD_EXAMPLES=ON -DWITH_CUDA=OFF -DWITH_QT=ON -DWITH_GTK=ON -DOPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules (-DBUILD_opencv_legacy=OFF) <opencv_source_directory>
OpenCV install
OpenCV install on Linux
cd opencv×.×
mkdir release
cd release
cmake ..
sudo make -j4
sudo make install
sudo /bin/bash -c 'echo "/usr/local/lib">/etc/ld.so.conf.d/opencv.conf'
sudo ldconfig
验证OpenCV安装成功:
pkg-config opencv --cflags --libs #查看opencv安装情况 参考pkg-config --help
pkg-confg --modversion opencv
OpenCV install on windows VS2015
- Modify system env variable 我的电脑-属性-高级系统设置-环境变量(需要注销账户). Add
/path/opencv/build/x64/vc14/bin
to system path - VS 属性管理器-add new 选项卡: 包含的目录(c/c++-additionalIncludePath):
/path/opencv/build/include/opencv2
and/path/opencv/build/include/opencv
and/path/opencv/build/include
- 库目录(c/c++-additionalLibraryPath):
/path/opencv/build/x64/vc14/lib
- 连接器-输入(Linker-Input), add
opencv_world346d.lib
for debug oropencv_world346.lib
for release
Python OpenCV
这个博客的相关代码与opencv3.0 python 多视图知识,相关性较好,可以参考,但不是作者原创代码
Feature detect and match
resize
img = cv2.resize(img,(0,0), fx = 0.3, fy = 0.3)
img = cv2.resize(img,dsize=(0,0), fx = 0.3, fy = 0.3)
color to gray
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
new zero space
image_matche = cv2.cvtColor(np.zeros((image1.shape[0], image1.shape[1] * 2), dtype=np.uint8), cv2.COLOR_GRAY2BGR)
SIFT descriptor
if cv2.__version__.split('.')[0] == '2':
detector = cv2.FeatureDetector_create('SIFT')
descriptor = cv2.DescriptorExtractor_create('SIFT')
detector.setDouble("contrastThreshold", 0.1)
detector.setDouble('edgeThreshold', 10)
points = detector.detect(gray)
points, desc = descriptor.compute(gray, points)
else:
sift = cv2.xfeatures2d.SIFT_create()
points, desc = sift.detectAndCompute(gray, None)
two feature descriptor above match
def match_low(feature1,feature2):
FLANN_INDEX_KDTREE = 1
flann_params = dict(algorithm=FLANN_INDEX_KDTREE, tree=4)
flann = cv2.flann_Index(feature1, flann_params)
idx, dist = flann.knnSearch(feature2, 2, params={})
good1 = dist[:, 0] < dist[:, 1] * 0.8 * 0.8
matches_good1 = zip(idx[good1, 0], good1.nonzero()[0])
# (a, b) = np.array(matches_good, dtype=int)
flann = cv2.flann_Index(feature2, flann_params)
idx, dist = flann.knnSearch(feature1, 2, params={})
good2 = dist[:, 0] < dist[:, 1] * 0.8 ** 2
matches_good2 = zip(idx[good2, 0], good2.nonzero()[0])
matches1 = [(a, b) for a, b in np.array(matches_good1, dtype=int)]
matches2 = [(b, a) for a, b in np.array(matches_good2, dtype=int)]
matches = set(matches1).intersection(matches2)
return np.array(list(matches), dtype=int)
note that: cv2.flann_Index()
Summary:
This method does a fast local approximate nearest neighbors (FLANN) calculation between two sets of feature vectors. The result are two numpy arrays the first one is a list of indexes of the matches and the second one is the match distance value. For the match indices or idx, the index values correspond to the values of td, and the value in the array is the index in td. I.
I.e. j = idx[i] is where td[i] matches sd[j].
The second numpy array (dist), at the index i is the match distance between td[i] and sd[j].
Lower distances mean better matches.
Parameters:
sd - A numpy array of feature vectors of any size. (t is template)
td - A numpy array of feature vectors of any size, this vector is used for indexing
and the result arrays will have a length matching this vector. (s is source)
Returns:
Two numpy arrays, the first one, idx, is the idx of the matches of the vector td with sd.
The second one, dist, is the distance value for the closest match.
try:
import cv2
except:
logger.warning("Can't run FLANN Matches without OpenCV >= 2.3.0")
return
FLANN_INDEX_KDTREE = 1 # bug: flann enums are missing
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 4)
flann = cv2.flann_Index(sd, flann_params)
idx, dist = flann.knnSearch(td, 1, params = {}) # bug: need to provide empty dict
del flann
return idx,dist
CPP OpenCV
Draw epipolar line C++ template cpp
CMakeLists关于OpenCV写法
- shell command: locate opencv 发现机器上安装了很多opencv
- 在CMakeLists的find_package后加上
message(STATUS "opencv libraty status") message(STATUS "opencv version: ${OPENCV_VERSION}") message(STATUS "opencv INSTALL PATH: ${OPENCV_DIR}") message(STATUS "opencv INCLUDE PATH: ${OPENCV_INCLUDE_DIRS}")
而后cmake查看结果
如果不是想要的opencv版本,使用
set (OPNECV_DIR ".../share/OpenCV") NOTE: The OPENCV_DIR should have file called OpenCV-config.cmake
更改OpenCV版本。
查找cv::Mat的type
Way 1:
Mat数据结构中有一个type函数,对于一个定义为Mat结构的数据类型,例如Mat image;
#define CV_8U 0
#define CV_8S 1
#define CV_16U 2
#define CV_16S 3
#define CV_32S 4
#define CV_32F 5
#define CV_64F 6
#define CV_USRTYPE1 7
只要记住这8个编号,即单通道时,这些编号对应数据类型的Mat中type函数输出的值。然后若是2个通道,则再上8;3个通道,则加上16;4个通道则加上24。
depth:深度,即每一个像素的位数(bits),在opencv的Mat.depth()中得到的是一个 0 – 6 的数字,分别代表不同的位数:enum { CV_8U=0, CV_8S=1, CV_16U=2, CV_16S=3, CV_32S=4, CV_32F=5, CV_64F=6 }; 可见 0和1都代表8位, 2和3都代表16位,4和5代表32位,6代表64位;
Way 2:
string type2str(int type) {
string r;
uchar depth = type & CV_MAT_DEPTH_MASK;
uchar chans = 1 + (type >> CV_CN_SHIFT);
switch ( depth ) {
case CV_8U: r = "8U"; break;
case CV_8S: r = "8S"; break;
case CV_16U: r = "16U"; break;
case CV_16S: r = "16S"; break;
case CV_32S: r = "32S"; break;
case CV_32F: r = "32F"; break;
case CV_64F: r = "64F"; break;
default: r = "User"; break;
}
r += "C";
r += (chans+'0');
return r;
}
int main(int argc, char** argv)
{
mat = imread("C:\someimage.jpg");
type = mat.type();
string ty = type2str( M.type() );
printf("Matrix: %s %dx%d \n", ty.c_str(), M.cols, M.rows );
//std::cout<< ty<< std::endl;
}
Donation
If you think this useful for you, you can donate for me. Thank you for your support!